Our last issue, we explored the widely-accepted usage of probiotics in diarrhea. "What about constipation?" Many have asked. Our editorial team will take a bold step to uncover the wonders of probiotics on the other side.

Many have identified with this common gastrointestinal condition. Occurring more in females, elderly, and children, it is the cause of mobility in both young and old. The causative factors include metabolic disorders, lifestyle and occupation, drugs such as anticholinergic and other structural and non-structural problems. Worse, those with chronic constipation functional constipation, which includes constipation-provoking irritative bowel syndrome (IBS-C), dyspepsia, defaecation and slow transit constipation. The prevalence of functional constipation is the general population stands between 12% to 30%. On top of the usual laxatives like polyethylene glycol, newer treatment options include 5-HT4 agonists such as tegaserod and prucalopride, drugs that act on the enteric nervous system. Probiotics are specific to the strains. However, not all probiotic strains are effective for constipation. Published in the Lancet in 2005, several studies have shown that Lactobacillus GG was ineffective for children with chronic constipation. Ineffectiveness of Lactobacillus GG as treatment. Such an observation is certainly reveals that probiotics aid in the treatment of constipation in children. What is new?! Curr Opin Pharmacol. 2008 Aug 20 [Epub ahead of print]

The scientific and clinical research in the probiotics field is constantly growing, as there is so much to write on the clinical evidence of probiotics in human health and diseases. Our editorial team had to painstakingly select the best articles and compile them into this second issue.

In this issue, we have privileged to have Dr. Mark Wang and Prof. Ru. Kang Wang to write on the current trends and advances in colorectal cancer. In our scientific update section, we discuss and present the use of probiotics in potential development of the immune system. This issue would also cover the latest update on colorectal cancer.

We hope that you reading this newsletter as much as we prepare this newsletter. Thank you & God Bless!

Richard Wang
Editor-in-Chief

February 2009

Volume 2

Issue 2

Think BIG, Think Early

The Probiotics News

Editor’s note

The scientific and clinical research in the probiotics field is constantly growing, due to an increased focal interest, so much so to write on the clinical evidence of probiotics in human health and diseases. Our editorial team had to painstakingly select the best articles and compile them into this second issue.

In this issue, we have privileged to have Dr. Mark Wang and Prof. Ru. Kang Wang to write on the current trends and advances in colorectal cancer. In our scientific update section, we discuss and present the use of probiotics in potential development of the immune system. This issue would also cover the latest update on colorectal cancer.

We hope that you reading this newsletter as much as we prepare this newsletter. Thank you & God Bless!

Richard Wang
Editor-in-Chief

Colorectal Cancer: Current Trends & Advances

By Dr. Mark Wang

F.A.C.S. (Fellow)

Associate Consultant

Dept of Gastroenterology (S’G)
that, when administered in adequate amounts, confer a benefit to them. Probiotics are ‘live microbial’ food ingredients that may also reduce the toxicity of bile salts by binding bile acids, involved in fat digestion, within the colon, those of developed Western nations and have amongst habits and a more sedentary lifestyle. In the context of experienced dramatic improvements in socioeconomic causes. under understood. with factors like changes in diagnostic capabilities, several tertiary care centers, based upon best-available evidence for improvements in genetic testing, targeted therapy, and chemoradiation led in the development of modern-day colorectal surgery. Recent advances in bioanalytical and pharmacogenetic pathways and patient selection for different therapies these receptors, they have been shown to impart chemically-induced tumour-signal in animal models.

Majority of colorectal cancers are sporadic in nature with a known-genetic predisposition. Approximately 5% of colorectal cancers, however, are on the background of a known familial or personal history with known hereditary genetic mutations. The most common of these are Familial Adenomatous Polyposis (FAP) and Hereditary Non-Polypsis Colorectal Cancer (HNPCC), with affected individuals having a 100% and 80% lifetime risk of developing colorectal cancer, respectively. Members of these families are themselves at high risk of colorectal cancer and require close surveillance and should be counselled for genetic testing.

Known risk factors include age above 50 years, a family history of colorectal cancer or adenomas and a standing history of ulcerative colitis. The average population risk for an individual without any known genetic predisposition. Approximately 5% of colorectal cancer, and require close surveillance and should be counselled for genetic testing.

Risk factors include age above 50 years, a family history of colorectal cancer or adenomas and a standing history of ulcerative colitis. The average population risk for an individual without any known genetic predisposition.

Prebiotics: Human milk has a diverse formulation of oligosaccharides. These carbohydrates are unique to breast milk and comprise of different monomers linked together by α-1,6-glycosidic bonds. Among the many functions of HMOS the following are discussed - the stimulation of growth and activity of health positive bacteria and the binding to pathogens and interaction with immune cells.

HMOS are bifidobacteria. Studies have shown that HMOS increase the fermentation activity and growth of bifidobacteria. These friendly bacteria produce glycolytic acids that acts on α-1,6-glycosidic bonds thus utilising HMOS as food. The enzymes are specific to the bifidobacteria and not secreted by the human intestine.

In the context of a study in the non-organic breast milk group, it was observed that breast-fed infants have adult-like faecal microflora like B. longum and B. infantis. Whereas the healthy infants have more species such as B. adolescentis. Bifidobacteria can be used. The fermentation of HMOS can reduce faecal pH and the count and percentage of faecal bifidobacteria can be used. The fermentation of HMOS can reduce faecal pH and the count and percentage of faecal bifidobacteria can be assed by the bifidobacteria and not secreted by the human intestine. The faecal pH has also been observed in studies using glycosylated and non-glycosylated sugars. In addition, one of the above observations, has been that HMOS are beneficial to the immune system.

Clinical Benefits of HMOS

Human milk has a diverse formulation of oligosaccharides. These carbohydrates are unique to breast milk and comprise of different monomers linked together by α-1,6-glycosidic bonds. Among the many functions of HMOS the following are discussed - the stimulation of growth and activity of health positive bacteria and the binding to pathogens and interaction with immune cells.

In the context of a study in the non-organic breast milk group, it was observed that breast-fed infants have adult-like faecal microflora like B. longum and B. infantis. Whereas the healthy infants have more species such as B. adolescentis. Bifidobacteria can be used. The fermentation of HMOS can reduce faecal pH and the count and percentage of faecal bifidobacteria can be assed by the bifidobacteria and not secreted by the human intestine. The faecal pH has also been observed in studies using glycosylated and non-glycosylated sugars. In addition, one of the above observations, has been that HMOS are beneficial to the immune system.

Clinical Benefits of Prebiotics

To determine and measure the effect of prebiotics, markers such as short chain fatty acids (SCFA) profile, fecal pH, bacterial growth, and prebiotic availability, non-human milk oligosaccharides (HMONs) and bifidobacteria can be used. The fermentation of oligosaccharides within the gut may also influence the postnatal development of the immune system. Prebiotics have adult-like faecal microflora like B. longum and B. infantis, whereas the healthy infants have more species such as B. adolescentis. Bifidobacteria can be used. The fermentation of HMOS can reduce faecal pH and the count and percentage of faecal bifidobacteria can be assed by the bifidobacteria and not secreted by the human intestine. The faecal pH has also been observed in studies using glycosylated and non-glycosylated sugars. In addition, one of the above observations, has been that HMOS are beneficial to the immune system.